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ABSTRACT

In this paper, new adjusted biased regression agiins) are proposed by using an adjustment factsedoan
signal-to-noise ratio (SNR). The theoretical reswdte applied to Liu-type estimators using the vikelbwn data of
Portland Cement Data. The numerical results ar@avor of the proposed adjusted estimators in thenfof a smaller
prediction error sum of squares (PRESS) criteribrthe adjusted Liu type estimators compared todhginal ones.
The adjustment is also applied to the ordinarytlegsares estimators (OLSE) and other biased dstimsuch as ordinary
ridge regression estimator (ORRE), and Liu estim@t&). The best results are obtained for OLSE, @GREE, and Liu

type(1) estimators. It is concluded that this amient can be applied to any significantly regresstimator.

KEYWORDS: Adjusted Estimators, Liu Type Estimators, Ordindrgast Squares Estimator, Ordinary Ridge

Regression Estimator, Prediction Error Sum of SggiaBignal to Noise Ratio
1. INTRODUCTION

Several estimators have been proposed to combatuhiollinearity problem. Some of these estimatare the
Liu and Liu type estimators due to Liu (1993); 48003) respectively. Liu estimator proposed by (1993) received a
great attention in the literature. (See Akdeniz &aatiranlar (1995); Kaciranlar et al. (1999); Arsland Billor (2000);
Kaciranlar and Sakalliglu (2001); Torigoe and U[ig®06); Rong (2010); and Liu (2011).

Consider the following linear regression model:
y=zy+e, (1)
Where y is an (nx1) vector of standardized respangean (nxp) matrix of standardized regress¢rds a (px1)

vector of unknown parameters, a#dis an (nx1) vector of errors such thét N(O, ol ) Let }7 be the ordinary least
squares estimator (OLSE) ¢f, defined as,
~ J _1 I,
y=(22)"2y, 2)
which is the best linear unbiased estimator (BLOE) .

In the case of exiting near multcollinearity amargressors, the characteristic BLUE of OLSE willdfdittle
comfort. The variance of OLSE may be very largeits@accuracy will be reduced. Instead of using 8] @rious biased

regression estimators are considered. A popularenoal method to deal with the multicollinearityoptem is the
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46 Magda M. M. Haggag

ordinary ridge regression estimator (ORRE) propdseHioerl and Kennard (1970), which is definedd@mvs:

Vi = (z’z +Kkl )_lz'y, 3)
where k is a biasing ridge parameter. The disadggnbf ORRE is that a value of the ridge paranieteay be

-1
not large enough to reduce the condition numbethef matrix (Z'Z+k| ) when 2'zis very ill-conditioned. To

overcome this problem, Liu (1993) proposed Liuraeator which is based on the OLSTE, As a result, it is found that Liu

estimator performs poorly and sometimes gives ey information. To overcome this problwem, LA0(Q3) proposed

a new Liu-type estimator which depends on any egtm

After Liu (2003) introduced his Liu-type estimatararious estimators are proposed based on thimasti.
Combining Liu and Liu-type estimators with otheas®d and unbiased estimators, improving and adgudtiu and
Liue-type estimators are examples for these prdpgSae Kaciranlar et al. (1999); Alheety and Kab¢2009); Li and
Yang (2010); Liu (2011); Liu and Gao (2011); Li avidng (2011); Gruber (2012); Liu et al. (2013),.e}c

The purpose of this paper is to introduce new aegud.iu-type estimators, and special cases of thEne

adjustment based on the idea of signal-to-noise (8NR).

This paper is organized as follows. Section (2)samars Liu type estimators. Section (3) introdutles
methodology of the proposed estimators. Sectiomp(d$ent numerical results based on a simulatizysiand a real data

based on Cement Portland data. The conclusiorigsopéper are given in section (5).
2. LIU-TYPE REGRESSION ESTIMATORS

Liu (1993) proposed a new biased estimator as tmrnative to the ORRE by combining the Stein (1956)
estimator with the ORRE. This estimator is calledi"estimator” by Akdeniz and Kaciranlar (1995)ulgstimator (LE) is
defined as follows:

7o =(zz+1 JH(zy+dp), @)

where }7 is the OLSE ofy, and dd (— 00,00) is a an arbitrary constant parameter which cad tsémprove
the fit and the statistical properties. The advgmtaf the Liu estimator over the ORRﬁk , in (3) is that Liu estimator,

Pd, is a linear function of d, so it is easy to stlan optimal value of d. Akdeniz and Ozturk (20@®rived the

distribution density function of the stochasticgraeter d by assuming normality.

The LE, Pd in (4) is based on OLSEJ:() in (2), so its performance is poor and sometiigiges misleading

results. Liu (2003) proposed a new Liu-type estonét TE) to overcome the problem of LE as follows,
A~ _ -1 Ax
o = (22 +K0 )} (2y - 7)) ©)

where k>0 is a biasing parameter which can be ts@wbntrol the condition number of the mat(iZ',Z+ kl);
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dd (— 00,00) is a an arbitrary constant parameter which cad tsémprove the fit and the statistical propertisd f/

can be any estimator gf.

Liu (2003) considered two choices ﬁf , the first is the OLSE and the second is the ORRfined as LTE1 and

LTEZ2, respectively as follows:

LTEL: Ji o =|(Zz+ K ) ~d(Zz+k )} (22) 2. (6)

LTE2: J 4 = [(zz +kl )t —d(Zz+k )'le'y. )

Sakalliglu and Kaciranlar (2008) proposed a nevsdtaestimator called the k-d class estimator, défias
follows:

Vea =(2z+1)7(2y+df2), ®)

where Pk is the ORRE ofy . The above k-d class estimator is a special chkridype estimator defined in (5).

Sakalliglu and Kaciranlar (2008) compared theifnestor in (8) with the OLSE and the two Liu typdiemtors, LTE1

and LTEZ2. In this case, The k-d class estimatanddfin (8) can be defined as LTE3 as follows:
LTE3: Jiy = [(z’z +1) +d(zZz+1) N (Zz+ Kk )_1Jz'y. 9)

Rong (2010) used the above Liu-type estimators LTHE?2, and LTE3 in his proposal of adjusted estora
He based the adjustment on a general formula étHiee estimators and selected the adjusted fatiich minimizes the
PRESS. In this work, we propose to adjust Liu tgpgmators by using a different methodology based signal to noise

ratio (SNR). It is concluded that our adjustment ba applied to any other biased or unbiased estima

From the theory and practical point of view, conipgrbiased estimators is based on the mean sqeared
(MSE) scalar or matrix criterion (MMSE). (See Séikglu et al. (2001); Akdeniz and Erol (2003); Shikdu and
Kaciranlar (2008)).

All the comparisons, which based on MSE, showetl tthe best estimator depends on the unknown paeaspet
the variance of the error term in the linear regji@s model, and the value of the biasing or shigekparameter in biased
or shrinkage estimator. Sakalliglu and Kaciran2008) proved that the k-d class estimators hasrsupgroperties over
the OLSE, ORRE, and the Liu type estimators acoorth MMSE and MSE.

In this work, it is found that LTE3 is superioranthe other estimators according to PRESS criterio

3. THE METHODOLOGY
Definition

The estimatorpA is called an adjusted estimator of the estimﬁtoif Ais a diagonal matrix such that,

V=AY, (10)
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Whereﬁ is any estimator of the parameter vecjor and A=diag(a, &,...,gyp), such that (a, &,...,&p)<R are
p scalars.
3.1. The Signal- to-Noise Ratio (SNR)

Any value obtained by a measurement contains twopcments: the first contains the information okiest,
known as the signal, and the other consists ofaendrrors, or noise. The random errors are unwabésduse they

diminish the accuracy and precision of the measentm

There have been a large number of definitions ef dlgnal-to-noise ratio (SNR). One of the most ingoat
definitions is the one used by Taguchi (1987) imaliy engineering. Taguchi (1987) introduced thBofeing SNR for

evaluating the performance of the linear regressiodel in (1), as follows:

SNRzﬁz, (11)
g,

where ) is an unknown regression parameter, @ndis the standard deviation of the noise or there&mon of

the model.

An alternative definition of SNR is the reciprocdithe coefficient of variation, i.e., the ratio mean to standard

deviation of a signal or measurement as follows:

NrR=H (12)
g

wherey is the signal mean or expected value aiglthe standard deviation of the noise or an egtm
3.2. An Algorithm for the Proposed Adjusted Estimabrs

SNR is similar to testing whether g¢f, in the linear regression model in (1), is sigmwfitly different from zero

which can be defined as follows:

SNR:Ai:t(f/), (13)
gy

where t(ﬁ) is a t-statistic of testing the significance pf, and 5}; is the standard error of . Thus SNR is

considered large, that is representing a signdbifexample, SNR > 3 for a confidence level of988. This implies an

existence of a signal over and above noise. ltbeaconcluded that:

SNR=ALA=t(f/)>3. (14)
g;

Then number three can be used as a bench marktrsatcBNR should not be less than three. If SNIRdSs than

3, then the data implies some noise.
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From Eq.(12), the estimatq? can be defined as follows:

y=0,0(p)=33,. (15)
An adjusted estimator of/ can be obtained as follows:

Va=Ay=3Ad; . (16)

where A= diag(a&,......) is a diagonal matrix defined as an adjusted faofoﬁ, and a&,......3UR are

scalars. The adjusted factor A can be found as:

A:3-0%\ . (17)

The following simple iterative algorithm will be &g in finding the adjusted estimatﬁg:
«  Find the initial adjusted factdh : A =34, /., find the adjusted parametgr. Vi=Ay =30, , and
find

2

D1:||JA/1_JA/O

where 0. ; 1s the standard error of/o, }7 is the initial estimated parameter vector befatpistment, and|[ﬂ]2

denotes the squared norm.

»  Find the first adjusted factdy: A =30, /;, find the adjusted paramete: %, = AJ; =30, , and
find

A~ A2

Dz _”yz _y1|| J

where 5};1 is the standard error q?l, and }71 is the estimated parameter vector as definecem (4t).
«  Find the second adjusted facy: A =35, 1V,

find the adjusted parametgy:  j, = A, =30, , and find

A A2
D3 - ”ya - yz” ,
where 51/2 is the standard error quz, and }72 is the estimated parameter vector as definecem (&).

+ Repeat Finding the adjusted factor and the adjysteameter estimator m time4, , and}?m, respectively. Also,

the squared normD,, as follows:
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An=30ym/ym, and Vo = A =
~ ~ 2
Such thatD,, = |, = Vs =0
where & 2 is the standard error cﬁm, and Pm is the estimated parameter vector as definecem (sh).

* Finally take yA ym as the adjusted estimated parameter vector.
The adjustment will be applied to the Liu type mstiors and also to their special cases, OLSE andEORr
comparison.
3.3. The Prediction Error Sum of Squares (PRESS)

The prediction error sum of squares (PRESS) dtatistoposed by Allen (1974), is used to compaféeint
models. The PRESS statistic does not depend on partieular model parameters, but on the modelfitSae prediction
error sum of squares (PRESS) statistic is a fornsro$s-validation used in regression analysis twide a summary
measure of the fit of a model to a sample of olmé@ms that were not themselves used to estimagenthdel.

(See Allen (1971; 1974)).

In this paper PRESS is used to compare the diffepeoposed estimators with other unbiased and diase
estimators as will be shown in the following secti®RESS is simply calculated as the sums of squdrthe prediction

residuals for those observations as follows:
3 ~ 2 _\ ~ \2
PRESS=3"(y -9, f =2 (v -z ). (18)
i=1 i=1
where )A/i’_i is denotes the fitted value i without the ith atvadéion, and f/i'_i is any estimator ofy; after
discarding the ith observation.

The following estimators will be considered in thierk:

The OLSE:j,©9= (2Z -zZ) (Zy-zy,)

The ORRE:j O%%0= (ZZ +kl - zZ) 2y - zy,)

The LTEL: 1, “7=9= (22 +K ~32)* ~d(zZ +K1 ~32) (22~ 23) 2y ~3y)

The LTE2: ., U= [(2Z + K - 2Z) -~ d(ZZ +K -22)7|Zy-zy)

The LTES: 1= |(ZZ+1 ~72)* +d(ZZ+1 ~72) (22 +K-22) | Zy-2Y)

Also, the adjusted versions of these estimatorsb@iconsidered as follows:

+ The adjusted OLSEy‘ (AOLSE) (Z Z-1 Z|) 1(Z'y 4 yi)
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Y r _ -1 N,
The adjusted ORREY - AORREI=A, (z2Z+k -2Z)"(2y-2zy)
+ The adjusted LTE1)., T =As|(z2+k~22) ~dZz +ki ~32) (22~ 22) |2y -2y)
. The adjusted LTE2/- ATED p, 2z +k ~22)" ~d(zz +k ~22)*[zy-2¥)

«  The adjusted LTE3Y-i (ALTE9 =A5[(ZZ+I 22" +d(zZ+1 -32)"(zZ+K ‘Z%’H(ZV‘ZM)
The performance of these estimators will be shomh@mpared according the PRESS for the estimator.

4. NUMERICAL RESULTS

To investigate our proposed estimators discusséuismaper, the well-known dataset on Portlandesgrdue to
Woods et al (1932) is used. These data come froexpariment investigation of the heat evolved dyitime setting and
hardening of Portland cements of varied compositiand the dependence of this heat on the percentafjéour

components in the clinkers from which the cemens weoduced. A data frame with 13 observations enftfiowing

5 variables:
Xy Tricalcium Aluminate.
X Tricalcium Silicate.
X3 Tetracalcium Aluminoferrite.
Xg: Dicalcium Silicate.

It is found that the condition number of the maiXixs about 6051.419, which means that the desigtrimis
ill-conditioned, and the OLSE is no longer a gostinator using the MSE criterion. The theoretiedults of this paper

are well supported by this dataset as will be shimithe following sections.

In this work, the estimators will be compared adangy to PRESS, the best estimator is the one whashsmaller

value of PRESS. Also, the relative improvement (&lthe adjusted estimator comparéAP)to the original estimator

(17) will be computed as follows:

_ PRESSof j - PRESSof Aj
PRESS of j/

7,A7)

In this paper, it is shown that the optimal biadiactors are d=-0.1 and k=0.2. The repetitiorhefadjustment is
stopped for all biased estimator at m=3 exceptCh8E at m=1. In Table (1), and Table (2) it is fduhat the proposed
adjustment factor for the OLSE is (0.253488, 0.1R4Y.63085, 0.255449) and the PRESS before adjustis®8.5491
but is equal 17.00863 after using the adjustmeartbfavith a higher relative improvement of 82.74%ee Table (3)).

The proposed adjustment factor for the ORRE is5@89, 0.124523, 0.631725, 0.255188) and the PRE&Be
adjustment is 98.4282 but is equal 16.96145 aftgrguthe adjustment fact with high relative impnment of 73.62%.
(See Table (3)). The proposed adjustment factothf@r_iu estimator is (0.252766, 0.123185, 0.6341352968) and the
PRESS before adjustment is 98.4572 but is equ@B26. after using the adjustment factor with higatree improvement
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of 82.70%.(See Table (3)). The proposed factorsadjant for the LTE1 is (0.253365, 0.124567, 0.63128255293) and
the PRESS before adjustment is 98.5491 but is e®689768 after using the adjustment factor withekative

improvement of 82.74%(See Table (3)). The propas#dstment factor for the LTE2 is (0.857276, 0.8¥321.121333,
1.18959) and the PRESS before adjustment is 8843060 is equal 54.8621 after using the adjustmeatof with a
relative improvement of 37.94%. (See Table (3))e Pnoposed adjustment factor for the LTE3 is (03349 0.872642,
1.122145, 1.189543) and the PRESS before adjusis&8t58145 but is equal 54.79164 after usingattjestment factor
with a higher relative improvement of 38.84%.(Sebl€ (3)). These results are obtained using R lagguand "Irmest"”

package and Mini Tab.

Table 1: Parameter Estimates, Adjusted Parameter Esnates, PRESS Values for the Ordinary Least Squae
Estimators (OLSE) Using Portland Cement Data (PCDPue to Woods et al. (1932)

Parameter Estimates| OLSE Adjusted OLSE | ORRE | Adjusted ORRE LE Adjusted LE
V1 2.1930 0.5559 2.1903 0.5550 2.1779 0.5505
V2 1.15333 0.14382 1.1540 0.1437 1.5680 0.1425
Vs 0.7585 0.4785 0.7565 0.4779 0.7476 0.4743
Va 0.48632 0.12423 0.4867 0.1242 0.4886 0.1236
PRESS 98.5491 17.00863 98.4282 16.96145 97.8528 932%.

Table 2: Parameter Estimates, Adjusted Parameter Esnates, PRESS Values for the Three Liu Type Estintars,
LTE1, LTE2, and LTE3 Using Portland Cement Data (PM) Due to Woods et al. (1932)

Parameter Estimates| LTE1 Adjusted LTE1 LTE2 Adjusted LTE2 LTE3 Aﬂj.llfégad
2 2.1917 0.5553 2.0204 1.73204 2.0409 1.7334
V2 1.1536 0.1437 1.7118 1.49490 1.7282 1.5081
Vs 0.7575 0.4782 0.9000 1.00920 0.9063 1.0170
Va 0.4865 0.1242 0.8703 1.03530 0.8779 1.0443
PRESS 98.4926 16.99768 88.30704 54.80621 89.58148.79854

Table 3: The Relative Improvement (RI) of PRESS Vales for the Different Estimators before and after
Adjustment, OLSE, ORRE, LE, and the Three Liu TypeEstimators, LTE1, LTE2, and LTE3 Using Portland
Cement Data (PCD) Due to Woods et al. (1932)

PRESS for Different
Estimators OLSE ORRE LE LTE1 LTE2 LTE3

PRESS before adjustment 98.5491 98.4282 97.8528 4928.| 88.30704| 89.5814%
PRESS after adjustment 17.00863 16.96145 16.9325.997168 | 54.80621] 54.79164
RI 82.74% 73.62% 82.70% 82.749 37.94% 38.84%
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PRESS for the Different Estimators Before and After Adjustment

100

80

60
PRESS 40 B PRESS befor adjustment
20 W PRESS after adjustment

0

OLSE ORRE LE LE1  LE2  LE3

Estimators

Figure 1: PRESS for Different Estimators (OLSE, ORRE, LE, LTE1, LTE2, and LTE3)
Before and after Adjustment

Relative Improvement of PRESS for different estimators

RI

OLSE ORRE LE LEL LE2 LE3

Estimators

Figure 2: Relative Improvement of PRESS for Differat Estimators
(OLSE, ORRE, LE, LTE1, LTE2, and LTE3)

5. CONCLUSIONS

In this paper, we propose new adjusted biased seigire estimators by using an adjustment factor hase
signal-to-noise ratio (SNR) and an iterative algorn. The theoretical results are applied to the tmesently biased
estimators that are Liu-type estimators using teé known multicollinear data of Portland Cementt®due to Wood et
al. (1932). The numerical results are in favor of proposed adjusted estimators in the form of allemprediction error
sum of squares (PRESS) criterion of the adjustedype estimators compared to the original ones. ddjustment is also
applied to the ordinary least squares estimatoisSE) and other biased estimators such as ordindge rregression
estimator (ORRE), and Liu estimator (LE). The bresults are obtained for OLSE, ORRE, LE, and LEStin®ators in the
form of large relative improvement of the adjusestimator compared to the original estimator. tt ba concluded that
this adjustment can be applied to any significamdgression estimator. More work is needed in tea &f adjusted

regression estimators using different methodology.
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